AR 2.6

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

TECHNICAL MEMORANDUM

TO:

Timothy Brincefield, EPA Region 10

FROM:

Gordon Randall, Ecology and Environment, Inc., Seattle, Washington

THRU:

Dhroov Shivjiani, Ecology and Environment, Inc., Seattle, Washington

DATE:

January 20, 1997

RE:

Contract No. 68-W9-0020, WA No. 20-38-OPD4.

SUBJECT:

Risk Calculations for Agricultural Workers at Monsanto

The objective of this technical memorandum is to evaluate potential carcinogenic risks and non-cancer health hazards to agricultural workers laboring near the Monsanto Chemical Company (MCC) Soda Springs Elemental Phosphorus Plant. This technical memorandum is intended to supplement the baseline human health risk assessment for the MCC Plant (EPA 1995a). A full discussion of the risk assessment process and the methodology used is presented in the baseline risk assessment; this technical memorandum only lists differences from the assumptions used in the baseline.

Exposure Assessment

The following exposure pathways were evaluated for the agricultural worker scenario: soil ingestion, inhalation of particulates in air, and external gamma exposure. Several assumptions were made for this scenario that deviate from standard EPA. Region 10, defaults for industrial receptors. As directed by EPA (EPA 1997), agricultural workers were assumed to be present for 12 hours per day and 185 days per year. These receptors were assumed to ingest 100 mg/day of soil, representing 100% of the default adult incidental soil ingestion rate. An inhalation rate of 30 m³/day was used, representing 12 hours of moderate activity. Agricultural workers were assumed to be unshielded from external gamma radiation.

Exposure parameters for this scenario are summarized in Table 1-1. The calculations that use these parameters to estimate intake are presented in Table 1-2.

EPA (1997) directed E & E to evaluate the agricultural worker scenario at the North I and North II offsite future residential locations from the baseline risk assessment. Exposure point concentrations for contaminants in air and soil at these locations are presented in Table 1-3.

ZM3510.2.0

recycled paper

70484 USEPA SF

AR 2.6 ...

2. Toxicity Assessment

Since the baseline risk assessment was propared, the slope factors for radionuclides have been revised. The current values, presented in HEAST (EPA 1995b), frequently vary from the older values by a significant amount. The most recent toxicity values were used to calculate risks in this technical memorandum. A comparison of the old and new slope factors is presented in Table 2-1.

Risks for the future RME residential scenario at the North I and North II locations were recalculated using the new toxicity values. These results are presented in Table 2-2. Although many of the risks associated with individual pathways and contaminants have changed, the total risk does not change significantly. This is because of the comparatively small change to the slope factor of the primary risk driver, external exposure to Radium-226+D.

3. Risk Characterization

Table 3-1 presents the estimated excess lifetime cancer risks and non-cancer hazard quotients for the agricultural worker scenario. Table 3-2 shows the details of the risk calculations by pathway.

North I Location. The total excess lifetime cancer risks associated with potential exposure to metals was 3E-5; ingestion of arsenic (2E-5) was the primary contributor to the total risk estimate. The total excess lifetime cancer risks associated with potential exposure to radionuclides was 6E-4; external exposure to radium-226+D (6E-4) was the primary contributor to the total risk estimate. Hazard quotients were below 1 for all pathways.

North II Location. The total excess lifetime cancer risks associated with potential exposure to metals was 7E-6; ingestion of arsenic (5E-6) was the primary contributor to the total risk estimate. The total excess lifetime cancer risks associated with potential exposure to radionuclides was 1E-4; external exposure to radium-226+D (1E-4) was the primary contributor to the total risk estimate. Hazard quotients were below 1 for all pathways.

<u>Background.</u> Excess lifetime cancer risks at the background location were calculated at the background location. Table 3-3 presents the incremental risk over background for the North I and North II locations. Table 3-4 shows the details of the background risk calculations. Risks associated with ingestion of metals and exposure to radionuclides exceeded background at both locations; incremental risks were highest at the North I location.

4. Summary and Conclusions

Excess lifetime cancer risks associated with exposure to metals and radionuclides exceeded background at both the North I and North II locations. External exposure to Radium-226+D was the primary contributor to risks at both locations. This pathway yielded risks of 6E-4 at the North I location and 1E-4 at the North II location.

Table 4-1 presents a comparison of risks for the agricultural worker scenario and the future RME residential scenario presented in the baseline risk assessment (EPA 1995a). Excess lifetime cancer risks associated with exposure to radionuclides are about one third as high in the agricultural worker scenario as in the residential scenario; risks associated with ingestion and inhalation of metals are about one fifth as high in the agricultural worker scenario as in the residential scenario.

References

United States Environmental Protection Agency (EPA), 1995a, Baseline Human Health and Ecological Risk Assessments For Monsanto Chemical Corporation Superfund Site, Soda Springs, Idaho, Seattle, Washington.

EPA, 1995b, Health Effects Assessment Summary Table, Annual Update FY 1995, Office of Solid Waste and Emergency Response (OSWER), Washington, D.C.

EPA, 1997, personal communication from Timothy Brincefield to Dhroov Shivjiani at Ecology and Environment, Inc., Scattle, Washington.

	T	able 1-1		
Agricultural	Worker	Scenario	Exposure	Factors

	RME Expos	ure Factors
Exposure Route	Noncarcinogens	Carcinogens
Soil Ingestion		
Ingestion Rate (mg/day)	100	100
Exposure Frequency (days/year)	185	185
Exposure Duration (years)	25	25
Body Weight (kg)	70	70
Averaging Time (days) ⁶	9,125	25,550
Dust Inhalation		
Inhalation Rate (m³/day)	30	30
Exposure Frequency (days/year)	185	18 5
Exposure Duration (years)	25	25
Body Weight (kg)	70	70
Averaging Time (days) ⁿ	9,125	25,550
Excernal Espasare to Radionacides	a Company or the Company of the Comp	
Gamma Shielding Factor (unitless)	NA NA	0.0 (b)
Gamma Exposure Factor (unitless)	NA	0.25(c)
Exposure Duration (years)	NA.	25

⁽a) Averaging time for noncarcinogens is the exposure duration x 365 days/yr. For carcinogens it is 70 years x 365 days/year.

⁽b) Workers assumed to be unshielded in the agricultural worker scenario.

⁽c) Gamma factor derived: ((12 h/d x 185 d/yr x 25 yr)/(24 h/d x 365 d/yr x 25 yr))

NA - not applicable

RME

Intake Factor

(m³/ke-d)

RME

Intake Factor

 C_{m}

138,750

0.32

0.078

	Intake Factor (in			· A T:	12 - 4 - 737 - 14	106 // >
Intake Factor = (Inge	Ingestion	Exposure	Osure (Juranon)/(Exponure	Averaging 1 ime	Body Body	k 10° mg/kg) RME
•	Rate	Frequency	Duration	Time	Weight	Intake Factor
Hazard or Risk	(mg/d)	(d/yr)	(yr)	(4)	(kg)	(1/d)
Non-cancer	100	185	.25	9,125	70	7.2E-07
Cancer	100	185	25	25,550	70	268-07
Intake Factor – Inge	Ingestion Rate x Exposi Ingestion Rate	re Frequency x Expe Exposure Frequency	osure Duration x Exposure Duration	Conversion Fact Conversion Factor	OF	RME Intake Factor
	(max/4)	(d/yr)	(yr)	(g/mg)		(1/d)
Hazard or Risk	(mg/d)	 				
Cancer	100	185	25	0,001		462.5
Cancer Calculation of Exte	100 rnal Exposure Fac	185 ctor (radionuclides)			or	TARTEST AND CONTROL OF
Cancer Calculation of Exte	100 rnal Exposure Fac	185 ctor (radionuclides)			or Gamma Exposure	TARTEST AND CONTROL OF
Hazard or Risk Cancer Calculation of Exte Exposure Factor = 12 Hazard or Risk	100 rnal Exposure Factorist Duration x Exposure	185 tor (radionuclides) (1-Gamma Shielding Gamma			Gamma	A67.5 Exposure

Exposure

Duration

<u>(yr)</u>

25

25

Inhalation

Rate

 (m^3/d)

30

Averaging

Time

(d)

9,125

25,550

Body

Weight

(kg)

70

70

Table 1-2

Shading highlights the calculated values

Hazard or Risk

Hazard or Risk

Non-cancer

Cancer

Сапсег

Inhalation

Rate

(m³/d)

30

30

Exposure

Duration

(yI)

25

Calculation of Inhalation Intake Factors (radionuclides in air) Intake Factor = Exposure Duration x Exposure Frequency x Inhalation Rate

Exposure

Frequency

(d/yr)

185

1,85

Exposure

Frequency

(d/yr)

185(d)

⁽a) Workers assumed to be unshielded in the agricultural worker scenario.

⁽¹² h/d x 185 d/yr x 25 yr)/(24 h/d x 365 d/yr x 25 yr))

Table 1-3

Exposure Point Concentrations

Agricultural Worker Scenario

	(4 × 4 × 5		
Soils (my/ky or pCi	/g)		Background
coc	North II	North I	(soil UCL)
Arsenic	10.4	34	4.4
Beryllium	1.4	3,7	1.2
Cadmium	16.1	153	2.1
Vanadium	68.3	371	25.8
Lead-210+D	6.9	65	2.5
Radium-226+D	2.5	13	1.9
Thorium-230	3,1	12	1.4
Uranium-238+D	2.8	11	1.7

Air (mg/m3 or pCi/	m3)	
COC	North II	North I
Arsenic	4.0E-08	9.3E-07
Ber y lliun	6.7E-09	1.5E-07
Cadmium	5.1E-07	1.2E-05
Vanadium	1.0E-06	2.0E-05
Lead-210+D	1.5E-04	2.9E-03
Radium-226+D	2.3E-05	3.9E-04
Thorium-230	2.5E-05	4.4E-04
Uranium-238+D	2,4E-05	4.4E-04

Table 2-1
Comparison of Radionuclide Slope Factors

	Slope Factors us	ed in Baseline Human Health	Rink Assensment	Slope Factors used in current evaluation					
1		From HEAST, 1994		From HEAST, 1995					
	Oral SF	Inhal. SF	Extern. SF	Oral SF	Inhal. SF	Extern. SF			
Radionnelido	(risk/pCi)	(risk/pCi)	(risk/yn/pCi/g)	(risk/pCi)	(risk/pCi)	(risk/yr/pCi/g)			
Lcad-210+D	6.6 E -10	4.0E-09	I.6E-10	1.1 E- 09	3.9E-09	1.5E-10			
Radium-226+D	1.2E-10	3.0E-09	6.0E-06	3.0E-10	2.8E-09	6.7E-06			
Thorium-230	1.3E-11	2.9E-08	5.4E-11	3.8E-11	1.7E-08	4.4E-11			
Uranium-238+D	2.0E-11	2.4E-08	5.1E-08	6.2E-11	1.2E-08	5.3E-08			

Table 2-2 Comparison of Future RME Residential Risks

	Risks calc	ulated in Ba	seline Risk	Assessment	Risks calculated using current slope factors					
North I	Ingestion	External	Inhalation	Total	Ingestion	External	Inhalation	Total		
Lead-210+D	5E-5	2E-7	2E-6	6E-5	9E-5	2E-7	2E-6	9E-5		
Radium-226+D	2E-6	2E-3	2E-7	2E-3	5E-6	2E-3	2E-7	2E-3		
Thorium-230	2E-7	2E-8	3E-6	3E-6	6E-7	1E-8	2E-6	2E-6		
Uranium-238+D	3E-7	1E-5	2E-6	2E-5	9E-7	1E-5	1E-6	2E-5		
Totals	6 E- 5	2E-3	8E-6	2E-3	1E-4	2E-3	5E-6	3203		
North II				······································						
Lead-210+D	6E-6	3E-8	1E-7	6 E -6	9E-6	2E-8	1E-7	1E-5		
Radium-226+D	4E-7	4E-4	1E-8	4E-4	9E-7	4E-4	1E-8	4E-4		
Thorium-230	5E-8	4E-9	2E-7	2E-7	IE-7	3 E- 9	9E-8	2E-7		
Uranium-238+D	7E-8	3 E- 6	1E-7	4E-6	2E-7	4 E -6	6 E-8	4E-6		
Totais	6 E -6	4E-4	4E-7	484	1E-5	4E-4	3E-7	48-4		

Shading indicates Total Risk from all chemicals and pathways.

Table 3-1
Agricultural Worker Scenario
Risks at North I

		Cance	r Risks		
Contaminant of Concern	Ingestion	External	Inhalation	TOTAL RISK	
Arsenic	2E-5	**	4E-6	2E-5	
Beryllium	4E-6		9E-8	4E-6	
Cadmium			6E-6	6E-6	
Pathway Risk	2E-5	_	9E-6	3E-5	
RADIONUCLIDES					
Lead-210+D	3E-5	6E-8	2E-6	3E-5	
Radium-226+D	2E-6	6E-4	1B-7	6E-4	
Thorium-230	2E-7	3E-9	1B-6	1E-6	
Uranium-238+D	3E-7	4E-6	8E-7	5E-6	
Pathway Risk	4E-5	6 E-4	4E-6	GE-4	

Shuding indicates Total Risk from all chemicals and pathways.

Table 3-1 (continued)
Agricultural Worker Scenario
Risks at North II

<u> </u>	Cancer Risks									
Contaminant of Concern	Ingestion	External	Inhalation	TOTAL RISK						
Arsenic	5E-6	-	2E-7	5E-6						
Beryllium	2E-6		4E-9	2E-6						
Cadmium	94		2E-7	2E-7						
Pathway Risk	6E-6		4E-7	78-6						
RADIONUCLIDES		<u></u>	,							
Lcad-210+D	3E-6	6E-9	8E-8	4E-6						
Radium-226+D	3E-7	1E-4	9E-9	1E-4						
Thorium-230	5E-8	9E-10	6E-8	1E-7						
Uranium-238+D	8E-8	9E-7	4E-8	1E-6						
Pathway Risk	4E-6	1E-4	2E-7	18-4						

Shading indicates Total Risk from all chemicals and pathways.

Table 3-2
Calculation of Hazards and Risks
Agricultural Worker Scenario

								Ref	erence Dos	es (RfD) as	ıd					
				F	actors (Table 1-2)			Slope Factors (SF)				Hazard Quotients and Cancer Risks				
•			Orai Intake Metals		· ·	External	Inhalation	Non-Cancer	Can	cer - Metals	/Rads			<u></u>	-	
	Concentration				Radiomichides	Exposure	Intake	RfDs		SFs	Haza		Hazard Cancer			
coc	Source	Air	Non-Cancer	Cancer	Cancer	Cancer	Cancer	Oral ReD	Ond	External	Inhalation	Quetient	Ingestion	External	Inhabition	TOTAL
YEARTH II																<u> </u>
Arsenic	10	4E-08	7.2E-47	2.6E-07	1		7.8E-02	3.0 E -04	1.8E+00	-	5.0E+01	2.5E-4)2	4.7E-06	-	1.5E-07	4.9 E -06
Berylbium	1.4	7E-09	7.2E-07	2.6E-07	-		7.8E-02	5.0E-03	4.3E+00		R.4E+00	2.0E-04	1.6E-06	-	4.4E-09	1.6E-06
Cadminn	16	5E-07	7.2E-07	2.6E-07	-		7.8E-02	1.0E-03			6.1E+00	1.2E-02	-	-	2.4E-07	2.4E-07
Vanadium.	68	1E -06	7.2E-07	2.6K-I)7	,	-	7.8E-02	7.0E-03			-	7.1E-03	_		-	
					_						F	athway Risk	6.3E-96		4.0E-07	1.782.06
RADIONUCLIDES													-	·		**********
Lead-210+D	6.9	1E-04			4.6E+02	6.3E÷00	1.4E+05	_	1.1E-09	1.SE-10	3.9E-1/9		3.5E-06	6.3E- 0 9	7.9E-08	3.6E-06
Radium-226+D	2.5	2E-05		1	4.60€÷0/2	6.3E+00	1.4E~05		3.0 E-10	6. 7E -06	2.8E-09		3.4 E -07	1.1E-04	8.BE-09	1.1E-04
Thorium-231)	3.1	2E-05		-	4.6E+02	6.3E+00	1.4E+05	-	3.88-11	4.4E-11	1.7E-08	~	5.4E-08	8.6E-10	5.9E-08	1.1E-07
Uranium-238-D	2.8	2E-05	1	-	4.6E+02	6.3 E+00	1.4E+05		6.2E-11	5.3E-08	1.2E-08	-	8.DE-08	9.3E-07	4.2E-08	1.1E-06
											P	athway Risk	4.0E-06	1.1E-04	1.9E-07	E.ME-04

(a) Units are not shown for concentrations, factors, or toxicity values; units are listed in Table B-3, Appendix A, Section 2.0 of the baseline risk assessment.

Table 3-2 (continued) Calculation of Hazards and Risks Agricultural Worker Scenario

		Reference Doses (RfD) and															
				F	actors (Table 1-2)			Slope Factors (SF)				Hazard Quotients and Cancer Risks					
		Oral I			,	Externa	Inhalation	Non-Cancer	i i			_					
coc	Concentration		Metals		Radionuclides	Exposure	Intake	RfDs			Hazard	Cancer Risk					
	Source	Air	Non-Cancer	Cancer	Cancer	Cancer	Cancer	Orai RfD	Omi	External	Inhalation	Quotient	Ingestion	External	Inhalation	TOTA	
NORTHI																	
Arsenic	34	9E-07	7_2E-07	2.6E-07	-	_	7. XE -02	3.0E-04	1.8E+00	-	5.0E+01	8.2E-02	1.5E-05	-	3.6E-06	1.9E-	
Berylbum	4	IE-07	7.2E-07	2.6E-07	-	_	7.8E-02	5.0E-03	4.3E+00		8.4E+00	5.416-1)4	4.1E-06		9-4E-08	4.2E-	
Cadmium	153	1B-4)5	7.2E-07	2.6E-07		-	7.8E-02	1.0E-03			6.1E+00	1.1E-01			5.6E-06	5.6E-	
Vanadium.	371	2E-05	7.2B-07	2.6E-07	-		7.8E-02	7.0E-03			-	3.8E-02	-	-	-	-	
											P	athway Risk	2.0E-05	_	9.3E-06	2304	
RADIONUCLIDES														•		*******	
Lead-210+D	65	3E-03	_		4.6E+02	6.3E+00	1.4E+05	-	1.1E-09	1.5E-10	3.9E-09		3.3E-05	6.0E-08	1.5E-06	3.4E-	
Radium-226+D	13	4E-04	-		4.6E÷02	6.3 E+00	1.4E+05	-	3.0E-10	6.7E-06	2.8E-09		1.8E-06	5.6E-04	1.5 E -07	5.6E-4	
Ihorium-230	12	.4E-04	_		4.6E-02	6.3E÷00	1.4E+05	_	3.8 E-1 1	4.4E-1J	1.7E-08		2.1E-07	3.3E-09	1.1E-06	1.3E-4	
Cranineo-238+D	11	4E-04		-	4.6E-02	6.3E-00	1.4E+05	_	6.2 E -11	5.3E-08	1.2E-08		3.2E-07	3.7E-06	7.6E-07	4.7E-	
											P	athway Risk	3.5E-05	5.6E-04	3.5E-06	6.9E	

(a) Units are not shown for concentrations, factors, or toxicity values; units are listed in Table B-3, Appendix A, Section 2.0 of the baseline nak assessment.

Table 3-3
Incremental Risk Over Background
Agricultural Worker Scenario

	SCENARIO RISK			
	Site*	Background	Ingest, External	Inhalation
NORTH I				
Metals	3E-5	3E-6	3E-5	9E-6
Radionuclides	6E-4	8E-5	5E-4	4E-6
Radionuclides	6E-4	8E-5	5E-4	4
NORTH II				
Metals	7E-6	3E-6	3E-6	4E-7

⁽a) includes ingestion, external, and inhalation.

⁽b) Includes ingestion and external.

Table 3-4
Calculation of Hazards and Risks at Background
Agricultural Worker Scenario

		Factors (Table 1-2)		Reference Doses and Slope Factors		Hazard Quotients and Cancer Risks					
	Soil	Soil Oral Intake	ake	External Exposure	Non-Cancer RfDs	Cancer - Metals/Rads SFs		Hazard	Cancer Risk		
COC	Concentration	Non-cancer	Cancer	Canoer	Oral RfD	Oral	External	Quotient	Oral	External	TOTAL
Arsenic	4.4	7.2E-07	2.6E-07	-	3.0E-04	1.8 E+0 D	_	1.1E-02	2.0E-06	•	2.0E-06
Beryllium	1.2	7.2E-07	2.6E-07		5.0E-03	4.31E+00		1.7E-04	1.3E-06		1.3E-06
								Pathway Risk	33£46		3.313-06
Radionuclides											
Lead-210	2.5	-	4.6E+02	6,3 E +00	, ,	1.1 E- 09	1.5E-10	-	1.3E-06	2.3E-09	1.3E-06
Radrum-226	1.9	-	4.6E+02	6.3 E +00	-	3.0 E- 10	6.7E-06	-	2.6E-07	8.1E-05	8.1E-05
Thorium-230	1.4	-	4.6E+02	6.3E+00		3.8E-11	4.4E-11		2.4E-08	3.9E-10	2.5E-08
Uranium-238+D	1.7	-	4.6E+02	6.3 E +00		6.2E-11	5.3E-08		4.9E-08	5.7E-07	6.1E-07
					-		•	Pathway Risk	1.6E-86	8.2E-05	E3E .05

(a) Units are not shown for concentrations, factors, or toxicity values; units are listed in Table B-3. Appendix A. Section 2.0 of the baseline risk assessment.

NORTH II Metals

Radiomiclides

-	Table 4-1 of Risks for Agricultural V Future Residential RME			
	SCE	NARIO		
	Agricultural Worker	Future Residential RME		
NORTH I				
Metals	3E-5	1E-4		
Radionuclides	6E-4	2E-3		

7E-6

1E-4

4E-5

4E-4

AgWorker4-1 1/20/97